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Abstract 
A hypothesis is put forward concerning the existence of 
the general relation between aperiodic crystal struc- 
tures and the invariants of the group of the automorph- 
isms of the d-dimensional torus. A relation is proved 
between the one-dimensional and two-dimensional 
displacive modulations and the rationality of some 
invariants of the group of automorphisms of both the 
circle S 1 and the torus T 2. 

1. Introduction 
Incommensurately (IC) modulated crystal structures do 
not possess translational symmetry in three-dimensional 
space, whereas in commensurately (C) modulated 
crystal structures one can always redefine the basic 
vectors of the crystal lattice in such a way that the 
translational symmetry is restored in three dimensions. 
As a result of this operation, the volume of the 
elementary cell of the basic structure always increases. 
IC modulation is characterized by the fact that both the 
modulation vectors and the basic vectors of the reci- 
procal lattice are linearly independent over the field of 
rational numbers. This means that in IC structures the 
translational symmetry breaks and they cannot be 
described by the three-dimensional crystallographic 
symmetry space groups. The symmetry of such systems 
is described by the superspace groups (e.g. Janner et al., 
1983), which are defined in (3+d)-dimensional space, 
where d is the number of the modulation vectors in the 
elementary cell of the crystal lattice. 

The incommensurability of the crystal structure 
served as a necessary condition for the application of 
the superspace groups to the description of the modu- 
lated structures at the first stage of development of de 
Wolff's idea of the supercrystal (de Wolff, 1974). 
However, it turned out in the mathematical derivation 
of the superspace groups (Janssen & Janner, 1979) that 
the incommensurability condition was not essential so 
superspace groups can also be applied to the descrip- 
tions of commensurate structures. In general, the posi- 
tion of the jth atom in the nth elementary cell of the 
displacively modulated structure is given by 

r(j,  n) = n + % + u(j,  n), (1) 
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where n = (h i ,  n 2, n3) and hi ,  n2, n 3 are integers; vector 
n is defined with respect to an arbitrary (but fixed) 
basis, rj is the position of this atom in the nth elemen- 
tary cell of the basic (nonmodulated) structure and u is 
a periodic displacive modulation function defined with 
respect to the same basis as n. Thus, one can say that 
the modulated structure can be described by both the 
basic structure r i and the displacement field u. 

To introduce the idea of a supercrystal, one has to 
define the superspace in which a modulated structure 
regains the translational symmetry. Superspace Vs is a 
simple sum of the real space R 3 and a certain vector 
space Vd: 

V s : R 3 ~ V d. (2) 

Va is a d-dimensional space. 
In the (n + d)-dimensional space Vs, an Euclidean 

group of motions E(n + d) acts, which is a semisimple 
product of the orthogonal group O(n + d) and trans- 
lational group T(n + d). The superspace group Is is a 
subgroup of the group E(n + d) satisfying the condi- 
tions 

(i) Is A T(n + d) ~_ Z "+d 
(ii) [s 0 T(d)"~ Z a, (3) 

where T(d) is a translational group in Va. 
Condition (i) says that in Vs there exists a lattice E, 

which is invariant with respect to T(n + d): 

T(n + d)E -- E. 

Condition (ii) says that in Va there exists a lattice D, 
which is invariant with respect to T(d): 

T(d)D = D. 

In such a case, the translational subgroup T(d) is 
isomorphic with Z a. 

One can now modify equation (1) to make possible 
the description of atoms in Vs. After  such a modifica- 
tion, one obtains the following formula for the displa- 
cively modulated structures: 

r(j,  n, t) = n + rj + uj(q.  n + qd" t), (4) 

where n, q 6 R3; t, qd 6 Va, q being the modulation 
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vector in R 3 and qd being the corresponding vector in 
v~. 

Let us connect with every a tom in physical space a 
surface in Vs, which is described by a vector pa ramete r  
t. This surface, called the atomic surface Fj,,, is defined 
as 

Fjo = {(r, t) 6 Vslr  ~ = r~(j, n, t), c~ = 1, 2, 3}, (5) 

r~ being components  of the vector (4) in the R 3 space. 
For each pair ( j , n )  and ( f , n ' ) ,  the two corre- 

sponding atomic surfaces Fj,, and Ff,,, are topologically 
equivalent  with each other  and with respect to the space 
Vd. The  family of all the atomic surfaces F m is called the 
family F: 

F -- {Fjo}. (6) 

All the surfaces F~ are infinite surfaces. However ,  as 
they are topologically equivalent  to Vd, one can 
compact  them because in Vd there acts transitively a 
translation group T(d)  isomorphic with the set of inte- 
gers Z d and retaining the lattice D. The compaction 
consists here in the creation of the quotient  structure: 

V a / Z  a ~-- F / Z  a ~-- T a, (7) 

T a being a d-dimensional  torus. 
The aim of this work is to study a relationship 

between the modula ted  structures and the invariants of 
automorphisms S 1 (in the case of d = 1) and T 2 (in the 
case of d -- 2) as well as to put forward a hypothesis 
that, depending on the d value, there can exist different 
aperiodic crystal structures, e.g. incommensurate ly  
modula ted  structures and quasicrystals. Both 
ment ioned structures do not possess the translational 
symmetry  but from different reasons: the former  
because of the appearance  in the crystal of a periodic 
physical property, whose period is not commensura te  
with the corresponding lattice period; the latter because 
of the appearance  in the crystal of a symmetry  element  
that  is not consistent with any of the three-dimensional  
space groups (see e.g. Janot,  1994). Let us assume that  
in all cases of aperiodicity here both main and satellite 
reflections are sharp, which corresponds to the long- 
range interaction. 

To realise the aim ment ioned above, an analysis of 
the group of automorphisms of the d-dimensional Td is 
carried out. 

2. Modulated structure in the (3+d)-dimensional space 
(where d = 1, 2) and the number of  rotations 

Let us assume the simplest case of the displacive 
modulat ion,  i.e. for d -- 1. Then T 1 is a one-dimensional  
circle S 1. The modulat ion function u ( r )  has the 
following form: 

Ui(r) = Z Uin exp(2r r in r ) ,  (8) 

where i -- 1, 2, 3 and u~ are the coordinates of u with 
respect to the same basis as (1). The function u ( r )  is 
defined on the circle S ~ with the values in R 3. For each i 
(--  1, 2, 3), u; defines a mapping of S 1 into RI: 

ui ; S 1 ---+ R 1. (9) 

With the aid of u~, one can define the map ~0i, which 
transforms S 1 into $1: 

~0i(r) = r W u;(r). (10) 

In other  words, we defined the mapping • from the set 
of functions on S 1 with the values in R 1 [ J (S  ~, R1)] into 
the set of automorphisms S 1 [Aut(S1)], which can be 
written as 

: J (S  1 , R 1) ~ Aut(SX). 

In our case [see (10)], 

(~(Ui( '~) )  - -  ~Oi(~'). 

To prove that ~0; maps S 1 into S 1, notice that 

~0i(r + 1) = ~0,(r) + 1 (11) 

and that two points p~ and P2 on the circle are 
equivalent  if 

Pl - P2 = 2zrn, n integer. (12) 

The maps ~0i(r) are the automorphisms S 1. 
Having a modula ted  structure in R 3 ~  R 1, one can 

pass to R 3 ~  S 1 according to the Introduction.  The  
physical condition assumed at such a transition is that 
the type of modulat ion should not change, i.e. if we deal 
with the IC structure then after the transition the IC 
structure remains. This condition says that the same 
type of modulat ion should remain at the arbi t rary 
continuous map of S 1 into S 1. In other  words, the type 
of modulat ion should be invariant of the group of 
automorphisms S 1. It turns out that the number  of 
rotations p, which was first introduced by Denjoy 
(1932), makes  such an invariant. Let us recall its defi- 
nition and the corresponding theorems (Coddington & 
Levinson, 1955). 

Let q9 be the map of S 1 into S 1. Let us denote 
q ¢ ' -  9 o . . .  o ~0 (n times), which presents the n-fold 
composit ion of the map 9. The point r is the periodic 
point of the type m / n  if 

9"( r )  = r + m, (13) 

where m, n E Z. The number  of rotations p of the map 
q9 is defined as 

lim ~0"(r)/n = p. (14) 
n---+ OO 

The theorems concerning the periodic points and the 
number  of rotations are the following: 
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Theorem 1. (Coddington & Levinson, 1955.) For each 
ro ~ S 1, there exists 

lim 9"(ro)/n = p 

and it does not depend on the point r0. The number  p is 
rational when and only when ~0 has a periodic point. 

Theorem 2. (Godbillon,  1983.) Let ~p = o9 o ~0 o o9-1, 
where o9 is a homeomorph ism S 1 into S 1 and 
~0, ~p" S a --+ S a, then: 

(a) p~ -- PC,, if o9 keeps the orientat ion of $1; 
(b) P~0 + PC, = 0, if w changes the orientat ion of S 1. 

As follows from Theorem 2, p is an invariant  with 
respect to the group of automorphisms S 1. We can now 
apply the above definitions and theorems to the case 
under  study. Let us fix one of the components  of the 
modulat ion function (8) and let us denote  it as u(r) .  
For the other  components,  our considerations will be 
analogous. According to the above definition, one can 
link with the modulat ion function u( r )  the number  of 
rotat ions p: 

n p = lim ~0u(r)/n, (15) 
n---+ O~ 

where 

~0u(r ) = u(r)  + r. (16) 

The invariance of p with respect to the group of auto- 
morphisms S 1 agrees with our physical condition that 
the type of modulat ion cannot  change at the maps of 
the circle S 1 into S 1. Our  invariant p is a well defined 
quantity, which can serve for the classification of the 
structures with a single modulation.  

Let us assume that  ~0,,(r) possesses a periodic point, 
which means that the number  of rotations p is rational. 
One  can now state the following theorem: 

Theorem 3. If p is rational,  then the modula ted  struc- 
ture is commensurate .  

Proof. Assume that  our modula ted  structure be 
described with the aid of the modulat ion function u 
[equation (8)]. (We fix, as above, one of the components  
of u.) The physical condition says that the type of 
modulat ion cannot  change at any automorphism S 1. Let 
us choose now a map VN: 

V N : S  1 --+ S 1 (17) 

in the form 

vu(r  ) = qg~(r)/N. (18) 

Putting together  u and Vu. one obtains 

+cx~ 

U(PN(r ) )  = Y~  U n exp[2rr invu(r )]  =- u'(r). ( 1 9 )  
n = 0  

u ' ( r )  is a new modulat ion function and, in particular 
when N ~ c~, the type of modulat ion should not 

change: 

lim u ( v N ( r ) ) =  l i rn  y~ u n exp[2zrinvN(r)] 
N--*oo n=0 

+ ~  

= ~ u n exp(2rrinp), (20) 
n----0 

where p is the number  of rotations [see (14)]. We have 
assumed in the above equat ion that (a) the function u is 
continuous and (b) the series defining u is uniformly 
convergent.  

Assuming that p is a rational number  of the form 

p = q / p ,  (21) 

we can now write the last expression in (20) as 

S = Y~ u, exp(Zrrinq/p). (22) 
n = 0  

The above sum can be rewrit ten as follows: 

p - 1  

S = Y~ u, ,(p)exp(2rrinq/p),  (23) 
n-----0 

where 
+(3O 

u,,(p) = ~ ukp+, ,. (24) 
n=O 

Thus, if p is a rational number ,  then the sum in (20) is a 
finite sum, which corresponds to the commensura te  
modulat ion function and proves Theorem 3. Note  that, 
as follows from equations (4), (8), (10), (14), (15), (18)-  
(24), the number  of rotations p is rational only when 
the modulat ion pa ramete r  (ratio of the absolute value 
of the modulat ion wavevector  and the proper  reci- 
procal-lattice period) is rational. For the same reasons, 
if the number  of rotations p is irrational then the 
modulat ion pa ramete r  is also irrational and corre- 
sponds to an incommensura te  modulation.  

The essence of Theorem 3 is a construction of 
mapping • from the class of modula ted  structures M 
(in the case of one-dimensional  modulat ion)  into a 
group of automorphisms S 1 [Aut(Sl)] and then finding 
such a mapping of group Aut(S 1) into real numbers  R 1, 
which allows us to distinguish the inequivalent elements 
of Aut ($1). We say that f and f '  are equivalent  (belong 
to the same class) if there exists an w 6 Aut(S 1) such 
that 

f '  = o9 o f o og-1, (25) 

where f, f '  ~ mut(S1). 
As it turns out, the number  of rotations p makes  such 

a mapping (see Theorem 2). In our case, the mapping q~ 
t ransforms a modulat ion function into an element of 
Aut(S 1) and has the following form: 

• (u(r))  -- u(r)  + r = q)(r). (26) 
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In this formalism, Theorem 3 has a new form: 

Theorem 3'. If p(~0)• Q, then M is commensurate, 
where 

p (number of rotations) : Aut(S 1) ~ R 1, 
(27) 

Q is the set of rational numbers. 

Thus, 

g'(x) -- g(x) + hw 

[ w • Z  d and h • G L ( d , Z ) ] .  
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(33) 

Carrying out identical reasoning for each of the 
components of the modulation function (8), one can 
conclude that, if all the numbers of rotations, i.e. Pl, P2 
and P3, related to the coordinates ul(r) ,  u2(r) and u3(r),  
respectively, are rational, then the structure is 
commensurate. 

The above formalism can be generalized for the case 
when the space Vd has dimension d higher than 1. In 
such a case, • is a mapping from the class of aperiodic 
structures A into a group of automorphisms of the 
d-dimensional torus [Aut(Td)]: 

~ , : A  ~ Aut(Td). (28) 

Let us define a mapping p~ ( i - - 1  . . . . .  K; K is the 
number of invariants) of the group Aut(T d) into a class 
of the real numbers RI: 

Pi" Aut(Td) ~ R1. (29) 

One can then say that f and f ' ,  being elements of 
Aut(Td) ,  belong to the same class if 

Pi(f)  = Pi(f ')  (30) 

for all i = 1 . . . . .  K (number of invariants). 
One can then put forward a hypothesis: The number 

o f  inequivalent aperiodic structures is equal to the 
number  o f  classes o f  A u t ( T  d) defined by { P l . . .  Pr}.  If 
we carried out similar reasoning for the atomic surfaces 
F, we would cope with the two difficulties: 

(i) If g and g' map F into F, which means that 
g, g': F ~ F or, in other words, g, g' • Aut (F) then the 
same automorphism f belonging to Aut(T a) will 
correspond to g and g' when 

g ' = g + h ,  (31) 

where h • GL(d, Z). 
It is because, according to the construction of T d as 

the quotient space F / Z  d, two points x and x' • F are 
considered identical on the torus T d when x' = x + v, 
where v • Z  d. Let us assume that g ( x ) - - y  and 
g'(x) = y'. Then g'(x) and g(x) correspond to the same 
point on the torus when 

g'(x) = g(x) + w, w • Z a. (32) 

If we take another vector w ' •  Z a, then the above 
relation will also take place. In general, let h : Z a --+ Z a, 
then 

Aut(T d) = Aut(F)  mod GL(d, Z). (34) 

One can then see that to the one automorphism 
f •  Aut T a the whole family of automorphisms F 
corresponds, which is parametrized with the elements of 
the group GL(d, Z). If one considers the group Aut(F), 
then the problem arises with the unequivocal choice of 
g • Aut(F). This inconvenience disappears only when 
we are on the torus T a (after the compaction). 

(ii) In consequence of the ambiguity of the choice 
of g • Aut(F), one should construct invariants 
Xi: Aut(F) ~ R 1, which would result in the same value 
for the arguments g and g' related by g' = g + h: 

x,(g q- h) = x,(g), h • GL(d, Z). (35) 

The above formula says that the domain of ;6 is the 
group of automorphisms T d, thus Xi = Pi, where 

Pi:  Aut(Td) --+ R1. (36) 

To illustrate what was said above, let us assume the 
displacive modulation and d = 2. In this case, an atomic 
surface is given by 

F 2 -- {(q, t2, ul(q,  t2), u2(tl, t2), u3(tl, t2)) • R5[ 

q , t  2 • R  1 } C R  5 (37) 

(F2 is a two-dimensional surface in R5). Each of the 
functions ui(t) is periodic in h and t2: 

ui ( t  1 -~- m l ,  t 2 --~ m2) = u i ( t l ,  t2) , (38) 

where  ml ,  m2 E Z. 
If one identifies points t 1 n t- ml with tl and t 2 + m 2 

with t2, then F2 becomes a two-dimensional torus T 2 in 
R 5. It follows from the fact that two points belonging to 
R 5, namely 

p = (q, t2, Ul(l), U2(|), U3(l)) (39a) 

and 

p' = (q + ml, t2 + m2, ul(t), u2(t), u3(t)), (39b) 

are equivalent because 

p'  -- p -- (ml, m 2, 0, 0, 0). (40) 

Compaction here means identifying the points with the 
coordinates (t 1 + m 1, t2 + m2) with the points with the 
coordinates (t 1, t2). So, after compaction, the atomic 
surface/72 becomes a two-dimensional torus T 2 in R 5, as 
mentioned before. Let us denote the group of auto- 
morphisms of the two-dimensional torus as Aut(T2). If 
~o E Aut(T2), then 
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¢p : T2 ---+ T 2 
(41) 

~o(t) = (¢Pl(t), ~o2(t)). 

One can link two invariants with the automorphism ~o 
(analogously to the case when ~o: S 1 -+ $1): 

/91 = lim ¢p]'(t)/n n --+ ¢x~ (42a) 

P2 = lim ¢p~(l)/n n --+ c~, (42b) 

where the n-fold composi t ion q¢' = ¢p o . . .  o ¢p is defined 
a s  

q¢'(t) = (%(~0"-1(t)), ~02(~o"-1(t))). (43) 

Let  us take one of the components  of the modula t ion  
function [see (38)] and denote  it as 

u(t 1 , t2) = ~ uktexp[2Yri(kt I -k- lt2) ]. (44) 
k,I 

This function maps T 2 into R 1. 
One can link with the function u an automorphism of 

the torus T 2 in the following way: 

~0(t) = (u(t)  + t 1, u(t)  + t2). (45) 

The character  of the function u should not  change 
under  the action of the au tomorphism q9 acting on u in 
the following way: 

u(~0(t)) -- ~ uktexp{27ri[~o1(t)k + ~02(t)/]}. (46) 
k,l 

The composi t ion of ¢ / n  with the function u has the 
form 

u(~o"(t)/n) = ~ uktexp{27ri[k/nqC'(t ) + l/nql'(t)]}. (47) 

Passing with n to ~ ,  one obtains 

u(Pl, P2) = Y~ Uk.t exp[2rci(k/91 +/P2)]- (48) 
k,l 

One can distinguish three cases: 
(i) Pl and P2 are rational,  which means 

Pa = Pl /q l ,  /92 -- P2/q2" (49) 

In such a case, the series u(/91, P2) assumes the form 

ql--1 q2--1 

u(/9,, P2) = Y] ~ u,,.,,(q,, q2) 
n=0 m=0 

× exp[2rri(npl/q 1 + mP2/q2) ], (50) 

where 

COMPACTION OF T H E  (3+d) -DIMENSIONAL SPACE 

u,,,,,,(ql, q2) = ~ Ukql+n,lq2+m" (51) 
k,l 

So this case corresponds to the commensurate  modu- 
lation. 

(ii) 

Pl = P/q  (rational),  P2 irrational.  (52) 

In this case, 

q - 1  

U(Pl, P2) -- Y~ ~ u,,,t(q)exp[27ri(np/q + lP2)] (53) 
k=0 l 

and 

u,,,t(q ) = Y] Ukq+n,l. (54) 
k 

It corresponds to the case when the two-dimensional  
modula t ion  reduces to the incommensura te  modula t ion  
in one direction and to the commensurate  modula t ion  
in the other  direction. This reasoning contains also the 
case when Pa is irrat ional and P2 is rational. It follows 
from the fact that  the addit ional  dimensions of the 
superspace Vs are indistinguishable. 

(iii)/91 and Pz are irrational. Then the modula t ion  is 
incommensurate .  

Thus, in the case of d = 1, one has only two inequi- 
valent  classes: commensurate  and incommensurate  
structures and one mapping /9i (number  of rotations),  
where i = 1, which means that  K = 1. 

For d > 2, the number  K of invariants /9i increases. 
Note that the same type of reasoning can be applied 
also to those quasicrystals that  can be described in 
terms of a basic structure and a modulat ion,  but the 
proper  type of the modulat ion function should be used 
in (8) and (44). 
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